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[Use a separate Answer Book for each Group] 
 

Group – A 
 

Unit – I 

[Answer any three questions] 
 

1. a) Find the Fourier series of the periodic function f with period 2  defined as x xf (x) e e  , 

x [ , ]    and hence show that, 
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 b) State the Dirichlet's conditions for expansion into Fourier Series of a function. [3] 

 c) Show that for all values of x in [ , ]  , 
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2. a) By changing the order of integration, prove that 
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 b) Evaluate 
E

ydxdy over the region E in the first quadrant bounded by x-axis, the curves 

2 2 2x y a  , 2y bx . [2] 

 c) Show that 
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x 0 , y 0  and x y 1  . [4] 
 

3. a) Find the surface area of the part of the plane 
x y z

1
a b c
    which lies between the co-ordinate 

planes. [2] 

 b) Show that the volume of the solid bounded by the cylinder 2 2x y 2ax  and the paraboloid 

2 2x z 4ax  is 
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 c) Prove that 2
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4. a) Show that 
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 c) Prove that 
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5. a) Show that 
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 converges for p > 0.   [3] 

 b) Examine the convergence of the improper integral 
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 c) If f and g be two positive valued functions in [a,b] such that both have infinite discontinuity at 'a' 

only, both are integrable on [a ,b] , 0 b a    and 
x a

f (x)
lim

g(x) 
 , where is a non zero finite 

number, prove that 

b

a

f (x)dx and 

b

a

g(x)dx converge or diverge together.  [4] 

 

Unit – II 

[Answer any two questions] 
 

6. a) If a, b are integers; not both zero, then there exists integers u, v such that gcd(a,b) au bv  . [4] 

 b) Prove that the total number of positive divisors of a positive integer n is odd if and only if n is a 

perfect square. [4] 

 c) Find the number of zeros at the right end of the integer (141)!. [2] 
 

7. a) Let a > 1, be a positive integer. Prove that nn | (a 1)  , where n . [4] 

 b) If p be a prime then prove that  (p 1)! 1 0    (mod p) [3] 

 c) For any prime p > 3, prove that 13 divides 10
2p

 – 10
p
 + 1. [3] 

 

8. a) Solve the system of lineal congruences x 2(mod5) , x 3(mod7) , x 5(mod8) . [4] 

 b) State and prove Möbius inversion formula. [4] 

 c) Let 1 2 np p p ...p , the product of first n primes. Show that p+1 and p–1 are not perfect squares. [2] 
 

Group – B 
 

Unit – I 

[Answer any three questions] 
 

9. a) For n events A1, A2, ... An connected with random experiment E, show that 
n
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 b) A and B throw a pair of fair dice. A wins, if he throws 6 before B throw 7 and B wins, if he 

throws 7 before A throws 6. If A begins, what is the chance of B's winning? Also find the chance 

of B's winning when B begins. [5] 
 

10. a) If X is a Poisson variate with parameter  , show that x n1
P(X n) e x dx
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 b) The probability density function of a continuous random variable X is given by 
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  Show that the probability distribution of the random variable nX is standard normal. [3] 

 c) Prove that the distribution function Fx,y of a random variable (X,Y) is non-decreasing in both the 

variables x and y. [3] 
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11. a) Find the probability PN that a natural number choosen at random from the set {1, 2, 3, ...N} is 

divisible by a fixed natural number K. [4] 

 b) Two people agree to meet at a definite place between 12 and 1 o’clock with the understanding 

that each will wait 20 minutes for the other. What is the probability that they will meet. [4] 

 c) Show that second order moment about any point is minimum when taken about the mean. [2] 
 

12. a) If X is a binomial (n, p) variate, then prove that k
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kth central moment. [5] 

 b) Find the characteristic function of a normal (m, )  distribution. Hence show that if X1, X2, ..., Xn 

are n independent normal variates with parameters 1 1 2 2 n n(m , ),(m , ),...(m , )    respectively, 

then the random variable n 1 2 nS X X ... X    is also a normal variate with parameters (m, ) , 

where 1 2 nm m m ... m    and 2 2 2

1 2 n...      . [2+3] 
 

13. a) If  be the acute angle between the least square regression lines then show that 
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. Discuss the cases when 0  and 1   . (the symbols are of usual 

conversion). [3+1+1] 

 b) A random variable X has probability density function 
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  Compare it with the limit given by Tchebycheff's inequality. [3+2] 
 

Unit – II 

[Answer any two questions] 
 

14. a) Test for the convergence of n n{z } and n n{Arg z } where 
n

n 2
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 b) Find the radius of convergence of the power series n
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(cosin)z
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 c) Let f(z) and g(z) be two analytic functions on a region D such that Re(f ) Re(g) z D   . Show 

that there is a constant K such that f (z) g(z) K  , z D  . [4] 
 

15. a) If if (x iy) Re   be analytic, show that 
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 b) If f (z) u(x, y) iv(x, y)  be analytic, show that 
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 c) Let the function f (z) u(x, y) iv(x, y)  be defined in some neighbourhood of 

0 0 0 0 0z x iy (x , y )   . Suppose the first order partial derivatives of u and v are continuous at 

(x0, y0) and satisfy the Cauchy-Riemann equations at that point. Prove that f  exists at z0. [4] 

 

16. a) Answer either (i) or (ii) [4] 

  i) Assuming that the radius of convergence of the power series 
4n

n
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4n 1
  as 1, show that the 

series converges at all points on the circle of convergence except four points which you have 

to mention. 
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  ii) Let n

n
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 and n
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1 20 min{ , }     . If K Kf (z ) g(z ) for a sequence of distinct points, 
K K{z } in 0 | z |    

such that 
Kz 0 as K  , then show that an = bn for every n. 

 b) Let f(z) be analytic in a region D. If arg f is constant in D, show that f(z) is constant in D. [3] 

 c) If f (z) u(x, y) iv(x, y)  be analytic function. Find harmonic conjugate of u, where 
xu e (x cos y ysin y)  . [3] 
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