RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SIXTH SEMESTER EXAMINATION, MAY 2015

THIRD YEAR

Date : 27/05/2015 Time : 11 am – 3 pm MATHEMATICS (Honours) Paper : VII

Full Marks : 100

[Use a separate Answer Book for each Group]

<u>Group – A</u>

<u>Unit – I</u>

[Answer any three questions]

- 1. a) Find the Fourier series of the periodic function f with period 2π defined as $f(x) = e^x e^{-x}$, $x \in [-\pi, \pi]$ and hence show that, $\frac{1}{1^2 + 1} - \frac{3}{3^2 + 1} + \frac{5}{5^2 + 1} - \frac{7}{7^2 + 1} + \dots = \frac{\pi}{4\cosh\frac{\pi}{2}}$. [4]
 - b) State the Dirichlet's conditions for expansion into Fourier Series of a function.

c) Show that for all values of x in
$$[-\pi, \pi]$$
, $\cos kx = \frac{\sin k\pi}{\pi} \left[\frac{1}{k} + \sum_{n=1}^{\infty} \frac{(-1)^n 2k \cos nx}{k^2 - n^2} \right]$ where $0 < k < 1$. [3]

2. a) By changing the order of integration, prove that
$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} \frac{dy}{(1+e^{y})\sqrt{1-x^{2}-y^{2}}} = \frac{\pi}{2} \log\left[\frac{2e}{1+e}\right].$$
 [4]

b) Evaluate $\iint_E ydxdy$ over the region E in the first quadrant bounded by x-axis, the curves $x^2 + y^2 = a^2$, $y^2 = bx$.

c) Show that
$$\iint_{E} x^{\frac{1}{2}} y^{\frac{1}{3}} (1-x-y)^{\frac{2}{3}} dx dy = \frac{\Gamma\left(\frac{5}{3}\right) \Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{9}{2}\right)}$$
 where E is the triangle bounded by $x = 0, y = 0$ and $x + y = 1$. [4]

3. a) Find the surface area of the part of the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ which lies between the co-ordinate planes.

b) Show that the volume of the solid bounded by the cylinder $x^2 + y^2 = 2ax$ and the paraboloid $x^2 + z^2 = 4ax$ is $(3\pi + 8)\frac{2a^3}{3} \cdot (a > 0)$. [4]

c) Prove that $\iiint_E \frac{dx \, dy \, dz}{\sqrt{1 - x^2 - y^2 - z^2}} = \pi^2$ where E is the region bounded by the interior of the sphere $x^2 + y^2 + z^2 = 1.$ [4]

4. a) Show that
$$\int_{0}^{\frac{\pi}{2}} \frac{x^{m}}{\sin^{n} x} dx$$
 is convergent if and only if $n < 1 + m$. [3]

b) Prove that
$$\sqrt{\pi} \Gamma(2x) = 2^{2x-1} \Gamma(x) \Gamma\left(x + \frac{1}{2}\right)$$
 for $x > 0.$ [3]

[2]

[3]

[2]

c) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
 for $m, n > 0.$ [4]

[3]

[4]

[5]

[3]

- 5. a) Show that $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ converges for p > 0.
 - b) Examine the convergence of the improper integral $\int_{0}^{\pi} \frac{dx}{\cos \alpha \cos x}, \ 0 \le \alpha \le \pi.$ [3]

c) If f and g be two positive valued functions in [a,b] such that both have infinite discontinuity at 'a' only, both are integrable on $[a+\varepsilon,b]$, $0 < \varepsilon < b-a$ and $\lim_{x \to a^+} \frac{f(x)}{g(x)} = \ell$, where ℓ is a non zero finite

number, prove that $\int_{a}^{b} f(x) dx$ and $\int_{a}^{b} g(x) dx$ converge or diverge together.

<u>Unit – II</u>

[Answer any two questions]

6.	a)	If a, b are integers; not both zero, then there exists integers u, v such that $gcd(a,b) = au + bv$.	[4]
	ŕ	Prove that the total number of positive divisors of a positive integer n is odd if and only if n is a perfect square. Find the number of zeros at the right end of the integer (141)!.	[4] [2]
7.	a)	Let $a > 1$, be a positive integer. Prove that $n \phi(a^n - 1)$, where $n \in \mathbb{N}$.	[4]
	b)	If p be a prime then prove that $(p-1)!+1 \equiv 0 \pmod{p}$	[3]
	c)	For any prime $p > 3$, prove that 13 divides $10^{2p} - 10^p + 1$.	[3]
8.	a)	Solve the system of lineal congruences $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$, $x \equiv 5 \pmod{8}$.	[4]
	b)	State and prove Möbius inversion formula.	[4]
	c)	Let $p = p_1 p_2 \dots p_n$, the product of first n primes. Show that p+1 and p-1 are not perfect squares.	[2]
Chorn B			

<u>Group – B</u>

<u>Unit – I</u> [Answer any three questions]

- 9. a) For n events A_1 , A_2 , ... A_n connected with random experiment E, show that $P(A_1A_2...A_n) \ge \sum_{i=1}^{n} P(A_i) - (n-1)$. Hence show that $P\left(\sum_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i)$. [3+2]
 - b) A and B throw a pair of fair dice. A wins, if he throws 6 before B throw 7 and B wins, if he throws 7 before A throws 6. If A begins, what is the chance of B's winning? Also find the chance of B's winning when B begins.
- 10. a) If X is a Poisson variate with parameter μ , show that $P(X \le n) = \frac{1}{\lfloor n \rfloor_{\mu}^{\infty}} e^{-x} x^n dx$, when $n \in \mathbb{N}$. [4]
 - b) The probability density function of a continuous random variable X is given by

$$f_{x}(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} \cdot \frac{e^{-\frac{1}{2}} (\ell n x)^{2}}{x} , & 0 < x < \infty \\ 0 & , & \text{elsewhere} \end{cases}$$

Show that the probability distribution of the random variable lnX is standard normal.

c) Prove that the distribution function F_{x,y} of a random variable (X,Y) is non-decreasing in both the variables x and y.
[3]

- 11. a) Find the probability P_N that a natural number choosen at random from the set {1, 2, 3, ...N} is divisible by a fixed natural number K.
 - b) Two people agree to meet at a definite place between 12 and 1 o'clock with the understanding that each will wait 20 minutes for the other. What is the probability that they will meet. [4]

[4]

[2]

[5]

[3+2]

[4]

- c) Show that second order moment about any point is minimum when taken about the mean.
- 12. a) If X is a binomial (n, p) variate, then prove that $\mu_{k+1} = p(1-p)\left(nk\mu_{k-1} + \frac{d\mu_k}{dp}\right)$, where μ_k is the

kth central moment.

- b) Find the characteristic function of a normal (m, σ) distribution. Hence show that if $X_1, X_2, ..., X_n$ are n independent normal variates with parameters $(m_1, \sigma_1), (m_2, \sigma_2), ..., (m_n, \sigma_n)$ respectively, then the random variable $S_n = X_1 + X_2 + ... + X_n$ is also a normal variate with parameters (m, σ) , where $m = m_1 + m_2 + ... + m_n$ and $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2 + ... + \sigma_n^2}$. [2+3]
- 13. a) If θ be the acute angle between the least square regression lines then show that $\tan \theta = \frac{1 - \rho^2}{|\rho|} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$. Discuss the cases when $\rho = 0$ and $\rho = \pm 1$. (the symbols are of usual [3+1+1]

conversion).

b) A random variable X has probability density function

 $f(x) = 12x^2(1-x); 0 < x < 1$

compute $P(|X-m| \ge 2\sigma)$, m = E(x) $\sigma = +\sqrt{var(X)}$

Compare it with the limit given by Tchebycheff's inequality.

Unit – II [Answer any two questions]

- 14. a) Test for the convergence of $\{z_n\}_n$ and $\{\operatorname{Arg} z_n\}_n$ where $z_n = -2 + i \frac{(-1)^n}{n^2}$. [3]
 - b) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} (\cos in) z^n$. [3]
 - c) Let f(z) and g(z) be two analytic functions on a region D such that $\text{Re}(f) = \text{Re}(g) \forall z \in D$. Show that there is a constant K such that f(z) - g(z) = K, $\forall z \in D$. [4]

15. a) If
$$f(x+iy) = Re^{i\phi}$$
 be analytic, show that $\frac{\partial R}{\partial x} = R \frac{\partial \phi}{\partial y}$. [3]

- b) If f(z) = u(x, y) + iv(x, y) be analytic, show that $f(z) = 2u\left(\frac{z}{2}, -\frac{iz}{2}\right) + \text{constant}$. [3]
- c) Let the function f(z) = u(x, y) + iv(x, y) bedefined some neighbourhood of in $z_0 = x_0 + iy_0(x_0, y_0 \in \mathbb{R})$. Suppose the first order partial derivatives of u and v are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann equations at that point. Prove that f' exists at z_0 . [4]
- 16. a) Answer either (i) or (ii)
 - Assuming that the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{z^{4n}}{4n+1}$ as 1, show that the i) series converges at all points on the circle of convergence except four points which you have to mention.

- ii) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ converge for $|z| < \rho_1$ and $|z| < \rho_2$ respectively. Let $0 < \delta < \min\{\rho_1, \rho_2\}$. If $f(z_K) = g(z_K)$ for a sequence of distinct points, $\{z_K\}_K$ in $0 < |z| < \delta$ such that $z_K \to 0$ as $K \to \infty$, then show that $a_n = b_n$ for every n.
- b) Let f(z) be analytic in a region D. If arg f is constant in D, show that f(z) is constant in D. [3]

[3]

c) If f(z) = u(x, y) + iv(x, y) be analytic function. Find harmonic conjugate of u, where $u = e^{x}(x \cos y - y \sin y)$.

_____ X _____